Contact Us

Data Secrets to A Successful Drug Launch

Ankur Gupta, Sr. Product Marketing Manager, Reltio

Value from pharma should be measured in terms of clinical outcomes, patient satisfaction, and cost reduction. Using data, pharma companies can enhance value for patients along the entire lifecycle of a drug, from drug discovery to commercialization to end of exclusivity.

From the perspective of business strategy, value delivery can be seen as a three-step process as illustrated by David Ormesher, CEO of closerlook, in his PharmExec.com post.

  • Value Creation (discovery)

  • Value Capture (commercialization)

  • Value Extraction (end of exclusivity)

Discovery Phase: Value Creation via Data

It is important to capture unique customer insight to inform drug innovation. The drug should be relevant (to an urgent disease burden) as well as differentiated (relative to alternate therapies). These two factors will largely determine market access, provider endorsement and patient acceptance for a new drug. However, departmental silos between medical affairs and commercial side of the business, and lack of access to quality data lead to incomplete understanding of competition and the market.

A Self-Learning Data Platform goes beyond a traditional master data management (MDM) offering and brings together patient, provider, payer, and plan data from internal, third party, and public sources to cleanse, match, merge, un-merge, and relate in real time. Platform’s multi-domain data organization capability helps perform deeper analysis to better understand the needs of patients, providers, payers, and relationships among these players. A Self-Learning Data Platform breaks down silos among medical affairs, marketing, business intelligence and manufacturing, and helps develop a common understanding of customer data and market insight across all departments.

Research indicates that 81% of future drug sales performance is determined by actions taken during clinical development and early commercialization phase. It’s even more critical for a pre-commercial pharma which is planning to bring its first drug to the market. Early adoption of a Self-Learning Data Platform helps a pre-commercial pharma develop future-proof commercial infrastructure and put up business processes to launch their first drug with safety, efficacy, and desired formulary placement in place. Read the pre-commercial pharma success stories about how they successfully launched their first drug with the help of a Self-Learning Data Platform.

Commercialization Phase: Value Capture via Data

A new product’s commercial performance during the first six months after FDA approval is often considered a very important indicator for how the product will do over the course of its patent life. During Value Capture or commercialization phase, the purpose of data is to build trust and respect via data-driven personalization and engagement. However, pharma companies are unable to recognize prescribers and patients consistently across multiple channels and touchpoints. They often fail to increase content speed to market in their customers’ preferred channel. This leads to negative Net Promoter Score (NPS), increased defection to competitors, and loss of revenue and market share.

The more you know about your customers – the physicians who can write the product – and what they care about, the more you’re able to build an effective campaign around a new product. What you need – an out-of-the-box, data-driven affiliation management application, with built-in MDM, for managing all relationships within and across HCOs and HCPs to support commercial operations, identify the right key opinion leaders (KOLs), and understand their influence.

A Self-Learning Data Platform helps you organize launch as a micro-battle (See the Infographic “Make Your Drug Launch Truly Take Off”, Bain Insights, September, 2017), gather continuous front-line feedback from sales reps before, during and after the launch, and make rapid adjustments as needed to the launch strategy. It helps you make quick decisions on messaging, targeting and marketing investments. Such platform powers reliable advanced analytics by enabling master data profiles and graph relationships to be seamlessly combined with real-time interactions and analyzed in Spark. For example, when a new drug is launched, it helps track sales performance compared to projections so that you can adjust strategies whenever needed.

Read the success story of a French multinational pharmaceutical company that built Customer 360 on top of a Self-learning Data Platform to support their account-centric field operations and personalized engagement.

Loss of Exclusivity Phase: Value Extraction via Data

At the point when a drug loses its patent protection, its price typically drops quickly as generic competitors enter the market. During this phase, there is often enormous pricing pressure from competitive products and health insurers. In addition to these external pressures, there is also internal competition for attention and resources, usually from a promising new product.

The business strategy during Value Extraction is to increase efficiency via operational excellence. The main cost now is sales and marketing. This is where digital can play a very strategic role. Digital sales and marketing through non-personal promotion can become an effective substitute for sales rep promotion. By replacing expensive personnel costs with lower cost digital channels, we can reduce overhead costs but still maintain market share.

Read the success story of one of the oldest and largest global pharma that consolidated customer profile across all business functions to improve customer experience across all digital touchpoints, and better engage high-value customers.

Successful pharma companies use data as a competitive weapon to develop new sources of differentiation, focus on building superior customer experiences and treat drug launches as a micro-battle. How did your last launch perform vs. expectations, and what were the reasons for under-performance or over-performance? Which interactions matter most for your target physicians, and do you provide a superior customer experience? What are the three largest internal challenges your launch team faces, and what would it take to eliminate them?


Three Critical Ingredients for AI, Machine Learning & Cognitive Computing Success

Ramon Chen, Chief Product Officer, Reltio

You may already know a lot about Artificial Intelligence (AI), Machine Learning (ML), Deep Learning or even what some vendors call Cognitive Computing. Or maybe you are still trying to understand the nuances and differences between each term, and how they relate to each other.

Either way, it’s easy to be seduced by the “black magic” of technology that can solve a variety of your business challenges by just asking Watson, Einstein, Siri, Alexa, Hal (click for the iconic HAL 9000 scene in Space Odyssey) or other “humanizing” names.

In fact Gartner’s 2016 Emerging Technologies Hype Cycle has Machine Learning at the very “Peak of Inflated Expectations.” Those who are familiar with the cycle, know what is likely to come next <Trough of Disillusionment cough cough>. 

 

If you want to protect yourself from the hype, here are 3 critical ingredients for your consideration:

At Reltio we’ve been articulating a vision, which includes a pragmatic perspective of machine learning (ML) for over 3 years now. Realizing that not only does ML not offer a silver bullet, but there is still much to learn (pun intended) as to how such technologies can ultimately benefit both IT and business. Noted Big Data expert Bernard Marr provides a nice list of use cases that might be applied to your specific business and industry. The key is that a focused set of benefits for each users’ role, must be defined in order for it to be accurately measured so it doesn’t get labelled yet another (data) science project with limited value.

#1 Create a Reliable Data Foundation

Most companies are NOT ready for any form of AI, ML, or Cognitive Computing to help their business user, because their data is such poor shape to even attempt such an endeavor. Ironically, a great IT use case is to use ML to first help improve the consistency, accuracy and manageability for better data quality (DQ), uncovering patterns, anomaly detection and assisting humans, such as data stewards, to make their job more focused and efficient.

#2 Bring Analytics and Machine Learning to the Data

Just as the process of aggregating data to perform historical or predictive analytics is a cumbersome and expensive process, gathering and blending all of the right data that will guarantee machine learning is effective must be the in the DNA of any Modern Data Management Platform as a Service (PaaS).  

Bolting on AI or ML into legacy master data management (MDM) systems, or using such MDM tools to feed downstream disparate ML tools is putting lipstick on hosted managed services disguised as cloud. Reliable data, relevant insights and recommended actions via machine learning needs to be seamlessly combined into one, single multi-tenant cloud platform, architected from the ground up, for both analytical intelligence and operational execution, through data-driven applications.

Successful execution requires a closed-loop of all data, insights and actions, to ensure accurate metrication for continuously improved outcomes. Further, a multi-tenant cloud environment is the only way sufficient storage and processing capacity can be elastically accessed on demand to meet any business need.

Another benefit of a multi-tenant cloud PaaS is the potential to use a wide variety of anonymized data to help with machine learning across all industries. Having a large enough set of data is a critical factor for smaller companies to benefit from the right recommended actions, for common industry use cases.

#3 Don’t Go all in on one vendor

In a rush to market that “our tools do it too,” large vendors will unfortunately, over promise, and under deliver. It’s not their fault, as they must respond to the market, but many face an unenviable task of achieving ingredient #2 above, let alone attempting to now also execute on a plan to deliver their own AI technologies. 

An open ecosystem that allows you to choose and partner with the technologies, and domain experts of your choice is critical to getting the most out of a still young and evolving landscape. Most companies are already trying to evolve out of their legacy MDM platforms. Getting further locked into a single vendor, delivering both MDM and ML, through siloed disparate tools will not provide “clarity,” and may further complicate an already fragmented data management strategy.

At Reltio, we formed strategic partnerships with companies like QuintilesIMS to combine our strengths to jointly deliver on a vision for the next generation MDM and analytics capabilities for life sciences.

In summary, look to master your data in #1 for a reliable data foundation. #2 ensure that it covers all data types, sources and modes of consumption in a seamless feedback loop on a Modern Data Management platform architected from the ground up to avoid further siloing your data. Finally, #3 give yourself the openness and flexibility of your partners of choice to meet your business needs. 

You don’t want a HAL-like failure that prevents you from realizing your true goal of improving your business.

Don’t Gamble with Your Data. How to Stack the Cards in Your Favor

Blackjack is a game that many people believe offers the best chances to win in a casino. Because it is a game where the odds of any particular outcome can be determined somewhat accurately … if you have the right data. The best players in Blackjack do not make winning any particular hand a priority, but strictly make the best moves based on the probable outcomes, and the data they have through card counting.

If you played “basic strategy” in blackjack, you would be executing based on odds and probable outcomes, not gut feel. If you are familiar with the rules of blackjack you’ll likely make the correct decision in this following scenario:

Let’s say you are one-on-one against the dealer at the table and have been dealt these two cards: 10 and 6 totaling 16.

  YOUR HAND TOTALS 10 + 6 = 16

YOUR HAND TOTALS 10 + 6 = 16

  IF YOU HIT AND GET 7, 8, 9, 10, FACE CARD (K, Q, J) YOU WILL BUST AND LOSE

IF YOU HIT AND GET 7, 8, 9, 10, FACE CARD (K, Q, J) YOU WILL BUST AND LOSE

And the dealers up card is a Jack, value of 10. Do you Hit? (take another card) or do you Stand? (stop and take your chances and hopes the dealer busts)

The odds favor you taking a card.

 

Why? Because there are 5 cards that can improve your hand. Ace, 2, 3, 4, 5 (giving you 17, 18, 19, 20, 21 respectively) and only one card, a 6 that can really hurt you. That is because the cards 7, 8, 9, 10, J, Q, K are irrelevant because if you take them you bust (go over 21), but if the dealer gets them he/she gets 17 or better and you lose anyway.

So the odds are theoretically 5 cards to 1 in your favor. Even though the dealer’s advantage is that you are going first, you must hit 16 against a dealer 10 or face card, otherwise you are destined to lose.

 DEALERS UP CARD SHOWING A VALUE OF 10

DEALERS UP CARD SHOWING A VALUE OF 10

Under what circumstances might you decide to go against these odds? If you happen to be a card counter and you’ve kept track of all the cards that have come out of the deck thus far, and know exactly what’s left in the deck, allowing you to “predict” at a higher-level of certainty to go against the odds and conventional wisdom of the hand.

Ironically, this simplified blackjack strategy highlights how you might be gambling with your data.

Firstly, if you don’t have reliable data , i.e. you don’t really have a good handle on exactly what cards have gone before, or are still remaining in the deck, you can’t be sure any decision you make will yield your preferred outcome.

Second, you can collect as much data as you want, such as the history of the dealer, the skill of your fellow players, the way the table has been paying out tonight, and even extrapolate that across all the tables in the casino, but that doesn’t offer the relevant insight at this specific moment in time, which is what you need if your objective is to beat the dealer.

Finally, why does the Casino offer Blackjack as a game, if it’s possible that if you play according to the odds and execute basic strategy correctly, you stand a chance of winning? Well, apart from the fact that it still retains an edge because the dealer gets to go last, and there are other esoteric rules that tilt the odds back in the house’s favor, they know that most people don’t have the knowledge, or the recommended action to take based on the situation.

Just like playing blackjack without reliable data, your business decisions are a gamble, regardless of the analytics and visualization tools you’ve invested in. Most applications and data warehouses end up operating on inaccurate data. BI and analytic tools still require you to sift through mounds of irrelevant data to find what you need. And process-driven apps like CRM, don’t encapsulate the best practices or offer recommended actions of what to do given even the most common scenarios.

Reltio has helped leading companies stack the cards in their favor by showing them the Reltio Modern Data Management PaaS, with Data-driven applications to tilt the odds in their favor way. If you’d like to know more, contact us, and we’ll send you an actual professional tournament deck of cards that could save and make you and your business a fortune.